
PHYSICAL REVIEW E SEPTEMBER 1997VOLUME 56, NUMBER 3
Symmetry between laminar and burst phases for on-off intermittency
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~Received 18 February 1997!

It is demonstrated both analytically and numerically that a symmetry exists between laminar and burst
phases of on-off intermittency. The symmetry is a specific feature of on-off intermittency. It does not exist for
the other types of regular Pomeau-Manneville and crisis-induced intermittency. A diffusional model, which
incorporates reflecting barriers representing noise and nonlinearity, predicts the same scaling for the laminar
and the burst lengths near the blowout bifurcation point. The symmetry of the scaling properties is demon-
strated numerically for two systems exhibiting on-off intermittency, namely, the discrete three-dimensional
Hénon map and the unidirectionally coupled Ro¨ssler oscillators.@S1063-651X~97!01409-8#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

The most interesting feature of the intermittency in d
namic systems is its universality. The few universal
classes with the corresponding scaling exponents desc
very well the statistical properties of the intermittency in
large variety of models as well as in experimental syste
The universal scaling is related to the universal dynamics
the various systems in the neighborhood of an invariant
ject responsible for the intermittency. In the case of Pome
Manneville intermittency@1# such invariant objects in the
phase space are fixed points or periodic orbits. The lam
phases correspond to the time periods when the trajec
stays in the neighborhood of the invariant object. Dynam
in this region can be described by linear equations. Lin
dynamics, however, does not ensure reinjection to the ne
borhood of the invariant object and the trajectory alwa
leaves the linear neighborhood of the unstable fixed poin
periodic orbit during the burst phase. As a result, proper
of the burst phases are not universal since the nonlinear
namics far from the invariant object is system dependen

Recently, a different type of intermittency@2#, named by
Platt et al. @3# on-off intermittency, has attracted wide atte
tion. It is extensively studied both analytically and nume
cally @4–6# and is observed in various experimental syste
@7,8#. On-off intermittency can be defined as an intermedi
case between Pomeau-Manneville@1# and crisis-induced in-
termittency@9#. It possesses for the laminar lengths the sa
scaling exponents as that of Pomeau-Manneville type-III
termittency. Time series of the generic variable, howev
look like that of the chaos-to-chaos intermittency@8#. The
distinguishing feature of the on-off intermittency is a partic
lar structure of the phase space. It possesses a smooth in
ant manifold containing a chaotic attractor. This structure
the phase space is typical for dynamical systems with s
metry, for example, coupled, identical chaotic systems. T
smooth invariant manifold can be obtained from the symm
try properties of the equations describing the dynamics of
system. It can be quite difficult, however, to detect the
variant manifold from the time series.
561063-651X/97/56~3!/2592~5!/$10.00
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In this paper we demonstrate a different symmetry feat
of the on-off intermittency, which can be easily observed
experimental time series and is typical only for this type
intermittency. The symmetry between laminar and bu
phases can be easily detected visually. A signal, typical
on-off intermittency, is presented in Fig. 1 both as a tim
series of the variabler n corresponding to the distance from
the invariant manifold and as a time series of the inve
variabler n

21 . The similar structures of both time series a
evident. It will be shown below that both time series not on

FIG. 1. Intermittent time series calculated numerically for t
unidirectionally coupled noisy Ro¨ssler oscillators just above th
blowout bifurcation point. Details of the model are given in Sec. I
r n defines the difference between they variables of both identical
oscillators. The inverse variabler n

21 is plotted taking into accoun
only local minimum and maximum points in the original time seri
and corresponds to the inverse envelope.
2592 © 1997 The American Physical Society



T
o

d

ve
-
re
ou
ct
or
th
th

o
d
n
th
e
Th
es
al
es
th

ia
f

w
o

t o
f t

o
t

te
he
ed

nd
s
n

gh
n-
in

th
te

e

new

igi-

ing
is

des
se-
t-

r
hs,

of

tri-

int
ng

s
alue

tial

fast
er-
ab-

ed
ns
is-

ion
for

56 2593SYMMETRY BETWEEN LAMINAR AND BURST PHASES . . .
look similar but also have the same scaling properties.
obtain reasonable time series of the inverse signal for c
tinuous time systems like that of coupled Ro¨ssler oscillators
in Fig. 1, the envelope including only local minima an
maxima points should be plotted.

The on-off intermittent bursting takes place only abo
the blowout bifurcation point@10# at which the largest trans
versal Lyapunov exponent becomes positive for noise-f
perfectly symmetric, dynamical systems. Below the blow
bifurcation there are no bursts since the trajectories attra
to the invariant manifold stay on it forever. In noisy and/
slightly asymmetric systems bursts occur also below
noise-free bifurcation point. In this more realistic case,
symmetry between laminar and burst phases is even m
extended. The noisy on-off intermittency can be presente
a switching between two limiting states completely co
trolled by noise and by nonlinearity correspondingly. Bo
limiting states are unstable and switching between th
takes place, causing the intermittent temporal behavior.
reason for the symmetry between laminar and burst phas
that both noise and nonlinearity do not influence essenti
the dynamics in the region between the two limiting stat
They only ensure that the system is bounded, i.e., that
trajectories cannot be attracted forever both by the invar
manifold and by some other attractor in the phase space
from the manifold. The dynamics in the region between t
limiting states is determined by the symmetric random
‘‘chaotic’’ walk.

II. DIFFUSIONAL MODEL

The statistical properties of the burst phases, like tha
the laminar phases, can be obtained from the analysis o
simple one-dimensional map

r n115axnr n , ~1!

wherea is a control parameter. It describes the dynamics
the distancer n from the invariant manifold located a
r n50. The chaotic driving variablexn is determined by the
dynamics on the manifold. This map has been studied ex
sively in order to obtain analytical scaling properties of t
laminar phases. We exploit the same approach as that us
calculate the mean laminar length@5# and the distribution of
the laminar lengths@6# for noisy on-off intermittency. The
influence of additive noise is modeled by a reflecting bou
ary at some levelr 1, representing the noise strength in the
studies. The barrier reflects the most important conseque
of the additive noise, i.e., fast repulsion from the close nei
borhood of the invariant manifold. In a similar way, the i
fluence of nonlinear terms can be taken into account by
corporating a second reflecting barrier atr 2@r 1. The second
barrier reflects the fact that there is no other attractor in
phase space far from the invariant manifold and the sys
cannot runaway.

The map~1! in the logarithmic domain corresponds to th
biased ‘‘chaotic’’ walk

lnur n11u5 lnur nu1v1bn ~2!

bounded by the two reflecting boundaries lnr1 and lnr2. The
new control parameterv5(a2ac)/ac defines a deviation
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from the blowout bifurcation pointuacu5exp(2^lnuxnu&).
Here angular brackets denote the time average. The
driving variable bn5 lnuxnu2^lnuxnu& has zero mean value
^bn&50. The dispersionD of the variablebn is related to
the dispersion of the local Lyapunov exponents of the or
nal chaotic driving signal@5#. Most of the analytical results
for the laminar lengths are obtained assuming the driv
chaotic variablebn to be uncorrelated Gaussian noise. Th
assumption essentially simplifies the analysis and provi
good results for the long-time behavior close to the noi
free blowout bifurcation point. The random walk is symme
ric at the bifurcation pointv50 and all results obtained fo
the laminar lengths should also hold for the burst lengt
provided the noise barrierr 1 is replaced by the nonlinearity
barrier r 2. The control parameterv should be replaced by
2v to obtain the results for the burst phases in the case
small deviations from the bifurcation point.

The diffusional model predicts the same universal dis
bution

P~t!}(
i 50

`

~2i 11!2expF2~2i 11!2
t

t0
G ~3!

for both laminar and burst phases at the bifurcation po
v50. It is obtained from the analysis of the correspondi
Fokker-Planck equation@6#. The characteristic time of the
exponential decay is given by

t05
8ln2r *

p2D
. ~4!

It depends on the noise levelr 1 for the distribution of the
laminar lengths (r * 5r th /r 1). For the distribution of the
burst lengths it depends on the barrierr 2 characterizing non-
linear terms (r * 5r 2 /r th). In both cases, however, it obey
the same logarithmic dependence on the threshold v
r th .

For medium and large lengthst, the universal distribution
~3! is well approximated by a power law and an exponen
asymptotic, respectively

P~t!}H t23/2, t<t0

expF2
t

t0
G , t>t0 .

~5!

The exponential asymptotic behavior describes both the
exponential falloff and the shoulder region above the pow
law straight line. This shoulder appears because of the
sence of the multipliert23/2 in the asymptote~5! for the
large lengths. It is clearly seen in the numerically obtain
distributions presented below. There are only two regio
corresponding to the different behaviors of the universal d
tribution with a narrow crossover region between them@6#.

A similar analysis based on the Fokker-Planck equat
gives the expression valid both for mean laminar and
mean burst lengths@5#,
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^t&5z* v* 2112Dv22exp~22v* D21lnr * !

3@12exp~2v* z* D21!#. ~6!

Here, for laminar lengthsv* 5v and for burst lengths
v* 52v. The parameterz* defines the reinjection to th
region below and above the thresholdr th for laminar and
burst phases, repectively. It satisfies the condit
uvuz* D21!1 for diffusional reinjection. The dependence
the parameterz* on the thresholdr th , discriminating the
laminar and the burst phases, is weak@5#.

The noise-free scalinĝt&}v21 of the mean laminar
lengths appears only in the regionvD21ln(rth /r1)@1 above
the critical point for the noisy on-off intermittency. The sim
lar scaling for the mean burst lengtĥt&}2v21 appears
below the critical point in the regionuvuD21ln(r2 /rth)@1. It
is rather difficult, however, to observe this scaling in re
systems since the nonlinear terms, not included in the di
sional model, begin to play an important role moving aw
from the bifurcation point. As a result, the above scali
occurs only in a limited region that is difficult to detect. Th
dependence of the mean length on the threshold at the
cal pointv50 given by

^t&5H 2D21z* ln~r th /r 1! for laminar lengths

2D21z* ln~r 2 /r th! for burst lengths
~7!

is a characteristic more convenient for the detection of
symmetry between laminar and burst phases from time se
data. A single record of the intermittent time series at
critical point is sufficient to observe the logarithmic depe
dence of the mean lengtĥt& on thresholdr th .

III. NUMERICAL RESULTS

The diffusional model described above does not take
account all details of the chaotic systems. We present be
numerical results obtained from two models that demonst
that the symmetry between laminar and burst lengths h
also for real systems exhibiting on-off intermittency. T
first model is a discrete time system, namely, the thr
dimensional~3D! Hénon map@8,11#

xn115F~xn ,xn21!1a@xn
22F2~xn21 ,xn22!#1khn ,

F~xn ,xn21![110.3xn2121.4xn
2 , ~8!

wherek defines the small amplitude of the additive rando
noiseh. The invariant manifoldr n[xn2F(xn21 ,xn22)50
in the phase space of the map~8! exists for any value of the
control parametera in the noise-free casek50. The mani-
fold is stable below the blowout bifurcation poin
ac50.933 . . . andcontains a chaotic attractor correspondi
to the well-known He´non attractor. The noise-free model e
hibits on-off intermittency above the bifurcation poi
a.ac at which the invariant manifold becomes unstab
The map~8! was introduced in@11# as a particular example
from the class of maps generating identical attractors.

In recent years coupled, identical, chaotic systems h
attracted wide attention due to their very interesting feat
of chaotic synchronization and their possible applications
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secure communications. The on-off intermittency is a co
mon phenomenon appearing near the threshold of sync
nization for most of the coupled, identical, chaotic system
For noisy or slightly nonidentical systems, the intermitte
bursting takes place below as well as above the noise-
blowout bifurcation point, essentially affecting the synchr
nization required in the applications. As a seco
continuous-time model we have studied numerically the u
directionally coupled Ro¨ssler oscillators

dx/dt52y2z,

dy/dt5x10.2y1a~y12y!1kh, ~9!

dz/dt50.21z~x25.7!,

where the driving variabley1 is generated by the anothe
identical Rössler oscillator.

The distribution of the laminar and burst lengths is t
most convenient characteristic for the estimation from n
merical as well as experimental time series data. Recordin
single but long enough time series at the bifurcation poin
sufficient to estimate the distribution. Moreover, the fine tu
ing of the control parameter is not necessary since the pow
law scaling both for laminar and for burst lengths appears

FIG. 2. ~a! Distribution of the laminar lengths~filled circles! and
the burst lengths~open circles! for coupled Ro¨ssler oscillators at the
bifurcation pointac50.123 as estimated from the zero transver
Lyapunov exponent. The thresholdr th is 0.5 for laminar lengths.
For burst lengthsr th50.1. An additive random noise with ampli
tude 0.01 is added at every integration steph50.01 in a fourth-
order Runge-Kutta algorithm.~b! Same as~a! but for the 3D He´non
map with very small noise (k51026) at the bifurcation point
ac50.933.r th5531023 for laminar lengths andr th5531025 for
burst lengths. For both systems the probability is estimated u
equispaced in the logarithmic scale, properly weighted boxes
order to have uniformly distributed values. The solid straight li
corresponds to the power law with the exponent23/2.
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56 2595SYMMETRY BETWEEN LAMINAR AND BURST PHASES . . .
the region above as well as below the bifurcation point
the noisy and/or for the slightly asymmetric case typical
the experimental situation. For noise-free and comple
symmetric systems the power law in the distribution can
observed also slightly above the bifurcation point. Nume
cally calculated distributions of both laminar and bu
lengths for the 3D He´non map and for the coupled Ro¨ssler
oscillators are shown in Figs. 2~a! and 2~b!, respectively. All
distributions have a pronounced power-law scaling in
range of medium lengthst. The shoulder above the powe

FIG. 3. ~a! Dependence of inverse mean laminar lengths~filled
circles! and mean burst lengths~open circles! on the control param-
etera for coupled, slightly nonidentical Ro¨ssler oscillators without
noise~the parameter in the third equation is changed to 5.75 for
driving Rössler oscillator!. The thresholdr th50.5 is the same for
both laminar phases and burst phases.~b! Same as~a! but for the
noisy 3D Hénon map (r th5531024). The straight lines are drawn
only to guide the eye.

FIG. 4. Dependence of inverse mean laminar length~dots! and
burst lengths~circles! on the thresholdr th for the noisy 3D He´non
map at the bifurcation point. Solid lines correspond to the sca
predicted by the diffusional model.
r
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law straight line, preceding the fast exponential falloff,
better pronounced in the distribution of laminar lengths. T
reason is that the shoulder appears due to the so-called
fusional echo from the reflecting boundaries and it dis
pears if the reflecting boundary is not ‘‘hard’’ enough. Th
diffusional model assumes that both noise and nonlinea
barriers are identical and predicts that the distributions of
laminar and the burst lengths are identical. In the real s
tems, however, the nonlinearity barrier responsible for
shoulder in the distribution of the burst lengths is qu
‘‘soft.’’ The influence of the nonlinear terms becomes impo
tant in the region in which the trajectory, visiting it once, c
stay for a long time. The noise-induced barrier is mu
‘‘harder’’ since noise rejects the trajectory very fast from t
too close neighborhood of the invariant manifold.

Another universal scaling law often observed is the line
dependence of the inverse mean laminar length on the de
tion from the bifurcation point. In its pure form it appea
above the blowout bifurcation point for noise-free on-off i
termittency. The identical scaling behavior is expected
burst lengths below the bifurcation point in the model w
noise but without nonlinearity. However, even numeric
models without nonlinear terms are very artificial. For re
systems linear scaling of the inverse mean laminar and b
lengths can be observed only in the limited range of
control parameter above and below the bifurcation point,
spectively. The possibility to detect this region is very se
sitive to the noise level. The situation becomes even m
complicated for noise-free but slightly nonidentical coupl

e

g

FIG. 5. Parametert0 of the exponential falloff in the distribu-
tions of the laminar length~dots! and burst lengths~circles! versus
the thresholdr th for ~a! the noisy 3D He´non map and~b! the arti-
ficial linear system with reflecting barriers modeling the additi
noise and the nonlinearity and driven by the He´non map. Solid lines
correspond to the scaling predicted by the diffusional model.
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systems. In this case, the blowout bifurcation point its
cannot be estimated precisely since two slightly differ
manifolds corresponding to each of the coupled systems
ist. The problem concerning the reliable estimation of
scaling region is seen in Fig. 3, though a symmetry betw
mean laminar and mean burst lengths is evident.

The identical scaling of laminar and burst lengths is be
pronounced in characteristics estimated at the noise-free
furcation point. The distribution oft is only one example of
such characteristics. For the noisy 3D He´non map we have
calculated numerically also the dependence of the m
length ^t& and of the parametert0 on the thresholdr th as
shown in Figs. 4 and 5, respectively.t0 defines the fast ex
ponential falloff for large lengthst in the distributions
P(t). These characteristics are conveniently estimated f
the time series data since calculations for the differ
threshold values discriminating laminar and burst phases
be performed just from a single time series. As it can
deduced from Figs. 4 and 5 the logarithmic dependence
dicted by the diffusional model holds for a wide range
threshold values for both laminar and burst lengths. Ho
ever, the agreement between the diffusional model and
numerical results is not complete. The model predicts
only the same scaling but also the same absolute value
the proportionality factor. The corresponding slopes in Fi
4 and 5~a! are clearly different for laminar phases and burs
Although predicting the correct scaling, the diffusion
model incorporating reflecting barriers is not sufficient
describe all quantitative details of the on-off intermittenc
To prove that different slopes are emanating from the
tt
-

re
f
t
x-
e
n

r
bi-

n

m
t

an
e
e-
f
-

he
t
of
.
.

l

.
t

completely adequate description of the noise and nonline
ties by the reflecting barriers, we have calculated the sa
dependence oft0 on r th for the artificial model. The mode
corresponds to the noise-free linear chaotic walk with
driving signal generated by the He´non map like in the case o
the 3D one. The reflecting barriers were explicitly incorp
rated in numerical simulations. As it can be seen in Fig. 5~b!,
for this model not only the scaling but also the slopes are
same for both the laminar and the burst phases.

IV. CONCLUSION

We have shown that a symmetry between laminar a
burst phases for the on-off intermittency exists. It can
detected visually if the intermittent time series is compa
with that of the inverse variable. The diffusional model
on-off intermittency introduced earlier predicts a comple
symmetry between laminar and burst phases. It incorpor
reflecting barriers to model the influence of random addit
noise and nonlinearities. A numerical analysis of the no
3D Hénon map and the unidirectionally coupled Ro¨ssler os-
cillators shows that for real systems exhibiting on-off inte
mittency only the scaling laws appear to be symmetric,
not the proportionality factors. This result is explained by t
fact that reflecting boundaries represent only a rough
proximation for additive random noise and nonlinear term
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@5# A. Čenys and H. Lustfeld, J. Phys. A29, 11 ~1996!.
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