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Symmetry between laminar and burst phases for on-off intermittency
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It is demonstrated both analytically and numerically that a symmetry exists between laminar and burst
phases of on-off intermittency. The symmetry is a specific feature of on-off intermittency. It does not exist for
the other types of regular Pomeau-Manneville and crisis-induced intermittency. A diffusional model, which
incorporates reflecting barriers representing noise and nonlinearity, predicts the same scaling for the laminar
and the burst lengths near the blowout bifurcation point. The symmetry of the scaling properties is demon-
strated numerically for two systems exhibiting on-off intermittency, namely, the discrete three-dimensional
Henon map and the unidirectionally coupled Rter oscillators[S1063-651X97)01409-§

PACS numbdss): 05.45+b

[. INTRODUCTION In this paper we demonstrate a different symmetry feature
of the on-off intermittency, which can be easily observed in
The most interesting feature of the intermittency in dy-experimental time series and is typical only for this type of
namic systems is its universality. The few universalityintermittency. The symmetry between laminar and burst
classes with the corresponding scaling exponents descriiases can be easily detected visually. A signal, typical for
very well the statistical properties of the intermittency in aon-off intermittency, is presented in Fig. 1 both as a time
large variety of models as well as in experimental systemsSeries of the variable, corresponding to the distance from
The universal scaling is related to the universal dynamics ofh€ invariant manifold and as a time series of the inverse
the various Systems in the neighborhood of an invariant ob\lariablerr:l . The similar structures of both time series are
ject responsible for the intermittency. In the case of Pomeauevident. It will be shown below that both time series not only
Manneville intermittency{1] such invariant objects in the
phase space are fixed points or periodic orbits. The laminar
phases correspond to the time periods when the trajectory
stays in the neighborhood of the invariant object. Dynamics
in this region can be described by linear equations. Linear
dynamics, however, does not ensure reinjection to the neigh-
borhood of the invariant object and the trajectory always
leaves the linear neighborhood of the unstable fixed point or
periodic orbit during the burst phase. As a result, properties
of the burst phases are not universal since the nonlinear dy- 0 1000 20'00
namics far from the invariant object is system dependent. t
Recently, a different type of intermitten¢g], named by
Plattet al.[3] on-off intermittency, has attracted wide atten-
tion. It is extensively studied both analytically and numeri-
cally [4-6] and is observed in various experimental systems
[7,8]. On-off intermittency can be defined as an intermediate
case between Pomeau-Mannevjllg and crisis-induced in-
termittency{9]. It possesses for the laminar lengths the same
scaling exponents as that of Pomeau-Manneville type-Ill in-
termittency. Time series of the generic variable, however,
look like that of the chaos-to-chaos intermitteni@]. The 0 1000 20'00
distinguishing feature of the on-off intermittency is a particu- t
lar structure of the phase space. It possesses a smooth invari-
ant manifold containing a chaotic attractor. This structure of i 1. intermittent time series calculated numerically for the
the phase space is typical for dynamical systems with symgnjdirectionally coupled noisy Risler oscillators just above the
metry, for example, coupled, identical chaotic systems. Thjowout bifurcation point. Details of the model are given in Sec. Ill.
smooth invariant manifold can be obtained from the symmer  defines the difference between thevariables of both identical
try properties of the equations describing the dynamics of thescillators. The inverse variabteg, * is plotted taking into account
system. It can be quite difficult, however, to detect the in-only local minimum and maximum points in the original time series
variant manifold from the time series. and corresponds to the inverse envelope.
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look similar but also have the same scaling properties. T@rom the blowout bifurcation point/ag|=exp(—{Injx,|)).
obtain reasonable time series of the inverse signal for conHere angular brackets denote the time average. The new
tinuous time systems like that of coupledsRter oscillators  driving variable Bn=Inlx,|—(In|x,|) has zero mean value
in Fig. 1, the envelope including only local minima and (g.y=0. The dispersioD of the variableg, is related to
maxima points should be plotted. the dispersion of the local Lyapunov exponents of the origi-
The on-off intermittent bursting takes place only abovenal chaotic driving signal5]. Most of the analytical results
the blowout bifurcation pointt10] at which the largest trans- for the laminar lengths are obtained assuming the driving
versal Lyapunov exponent becomes positive for noise-freeghaotic variables, to be uncorrelated Gaussian noise. This
perfectly symmetric, dynamical systems. Below the blowoutassumption essentially simplifies the analysis and provides
bifurcation there are no bursts since the trajectories attracteghod results for the long-time behavior close to the noise-
to the invariant manifold stay on it forever. In noisy and/or free blowout bifurcation point. The random walk is symmet-
slightly asymmetric systems bursts occur also below thgjc at the bifurcation point =0 and all results obtained for
noise-free bifurcation point. In this more realistic case, thehe |aminar lengths should also hold for the burst lengths,
symmetry between laminar and burst phases is even moigovided the noise barrier, is replaced by the nonlinearity
extended. The noisy on-off intermittency can be presented asarrier r,. The control parameter should be replaced by
a switching between two limiting states completely con-_, o optain the results for the burst phases in the case of
trolled by noise and by nonlinearity correspondingly. Bothgmall deviations from the bifurcation point.

limiting states are unstable and switching between them Tpe giffusional model predicts the same universal distri-
takes place, causing the intermittent temporal behavior. Thgytion

reason for the symmetry between laminar and burst phases is

that both noise and nonlinearity do not influence essentially "

the dynamics in the region between the two limiting states. P(T)OCZ (2i +1)2exp{ _(2i +1)21} 3)
They only ensure that the system is bounded, i.e., that the <5 To
trajectories cannot be attracted forever both by the invariant

manifold and by some other attractor in the phase space fa%r . . . .
from the manifold. The dynamics in the region between two or both laminar and burst phases at the bifurcation point

limiting states is determined by the symmetric random o =0. Itis obtained f_rom the analysis of Fhe. cqrresponding
“chaotic” walk. Fokker-Planck equatioh6]. The characteristic time of the

exponential decay is given by

Il. DIFFUSIONAL MODEL

- . _ 8Inr*
The statistical properties of the burst phases, like that of o=
the laminar phases, can be obtained from the analysis of the 7D

simple one-dimensional map

4

It depends on the noise leve] for the distribution of the
laminar lengths (* =r,/r,). For the distribution of the

wherea is a control parameter. It describes the dynamics Of)urst lengths Egep?nds c:n ?ehbarmgrch?]racterlzmg ngn-
the distancer, from the invariant manifold located at 'N€ar terms (*=r,/ry,). In both cases, however, it obeys

r,=0. The chaotic driving variablg, is determined by the the same logarithmic dependence on the threshold value
dynamics on the manifold. This map has been studied exterfth: . . .
sively in order to obtain analytical scaling properties of the Eor medium af?d large lengths the universal d|str|but|on.
laminar phases. We exploit the same approach as that used@ IS wel! approxmgted by a power law and an exponential
calculate the mean laminar lend] and the distribution of ~2SYMPtotic, respectively

the laminar length$6] for noisy on-off intermittency. The

Mh+1=aXpln, 1

influence of additive noise is modeled by a reflecting bound- 732 <7

ary at some level,, representing the noise strength in these

studies. The barrier reflects the most important consequence P(7)x T )
of the additive noise, i.e., fast repulsion from the close neigh- exp{ Tl T=To

borhood of the invariant manifold. In a similar way, the in-

fluence of nonlinear terms can be taken into account by in-
Corporating a Second reﬂecting barrien’gbrl_ The Second The exponential asymptotiC behavior describes both the fast
barrier reflects the fact that there is no other attractor in th@&xponential falloff and the shoulder region above the power-
phase space far from the invariant manifold and the systedf@W straight line. This shoulder appears because of the ab-

cannot runaway. sence of the multiplierr—%? in the asymptotg5) for the
The map(1) in the logarithmic domain corresponds to the large lengths. It is clearly seen in the numerically obtained
biased “chaotic” walk distributions presented below. There are only two regions
corresponding to the different behaviors of the universal dis-

In|rosq|=Inlrp|+v+ B, (2)  tribution with a narrow crossover region between thigh

A similar analysis based on the Fokker-Planck equation
bounded by the two reflecting boundaries;land Irr,. The  gives the expression valid both for mean laminar and for
new control parameter =(a—a.)/a, defines a deviation mean burst lengthiss],
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(ry=z*v* "1+ 2Dv %exp(—2v*D " tinr*) - - -

X[1—exp2v*z*D~1)]. (6) 107
Here, for laminar lengthes* =v and for burst lengths T .
v*=—v. The parametez* defines the reinjection to the g 10
region below and above the threshalg for laminar and

burst phases, repectively. It satisfies the condition 10°°

|v|z*D~1<1 for diffusional reinjection. The dependence of

the parametez* on the threshold,, discriminating the : : :

laminar and the burst phases, is w¢ak (@) 10 10(7)- 1000
The noise-free scalingr)<cv ! of the mean laminar

lengths appears only in the regio® ~In(ry,/r;)>1 above

the critical point for the noisy on-off intermittency. The simi-

lar scaling for the mean burst lengtir)=—v~! appears

below the critical point in the regiofy|D ~2In(r,/ry)>1. It o

is rather difficult, however, to observe this scaling in real ot

systems since the nonlinear terms, not included in the diffu-

sional model, begin to play an important role moving away

from the bifurcation point. As a result, the above scaling

occurs only in a limited region that is difficult to detect. The

dependence of the mean length on the threshold at the criti-

cal pointv =0 given by

(b)

FIG. 2. (a) Distribution of the laminar lengthdilled circles and
(r)= the burst lengthgopen circlesfor coupled Rssler oscillators at the
2D 'z*In(r,/ry,)  for burst lengths bifurcation pointa,=0.123 as estimated from the zero transversal
Lyapunov exponent. The threshotg, is 0.5 for laminar lengths.
is a characteristic more convenient for the detection of the-or burst lengths,,=0.1. An additive random noise with ampli-
symmetry between laminar and burst phases from time seriggde 0.01 is added at every integration step0.01 in a fourth-
data. A single record of the intermittent time series at theorder Runge-Kutta algorithnib) Same aga) but for the 3D Haon
critical point is sufficient to observe the logarithmic depen-map with very small noise k=10 ®) at the bifurcation point

2D z*In(ry,/r,) for laminar lengths

dence of the mean lengtir) on threshold y, . a,=0.933.r,,=5x10"3 for laminar lengths and,,=5x 10" ° for
burst lengths. For both systems the probability is estimated using
IIl. NUMERICAL RESULTS equispaced in the logarithmic scale, properly weighted boxes in

order to have uniformly distributed values. The solid straight line

. . . . corresponds to the power law with the exponer8/2.
The diffusional model described above does not take into P P P

account all details of the chaotic systems. We present beloWa.re communications. The on-off intermittency is a com-

numerical results obtained from two models that demonstratg, ,, phenomenon appearing near the threshold of synchro-
that the symmetry between !a}mlnar and.burst _Iengths holdSization for most of the coupled, identical, chaotic systems.
also for real systems exhibiting on-off intermittency. The o noisy or slightly nonidentical systems, the intermittent
first model is a discrete time system, namely, the threep qting ‘takes place below as well as above the noise-free
dimensional(3D) Henon map[8,11] blowout bifurcation point, essentially affecting the synchro-
nization required in the applications. As a second
continuous-time model we have studied numerically the uni-
directionally coupled Rssler oscillators

Xnt1=F(Xq, Xp-1) + a[xﬁ— FZ(anl Xn—2) ]+ K7y,

F (X Xn_1)=1+0.3,_1— 1.4¢3, (8)
dx/dt=—-y—z,
wherek defines the small amplitude of the additive random
noise . The invariant manifold ,=x,— F(X,_1,X,_2)=0 dy/dt=x+0.2y+a(y,;—y)+k», (9)
in the phase space of the még) exists for any value of the
control parametea in the noise-free cask=0. The mani- dz/dt=0.2+2z(x—5.7),

fold is stable below the blowout bifurcation point

a.=0.933 ... andcontains a chaotic attractor correspondingwhere the driving variable/, is generated by the another

to the well-known Heon attractor. The noise-free model ex- identical R@sler oscillator.

hibits on-off intermittency above the bifurcation point  The distribution of the laminar and burst lengths is the

a>a. at which the invariant manifold becomes unstable.most convenient characteristic for the estimation from nu-

The map(8) was introduced if11] as a particular example merical as well as experimental time series data. Recording a

from the class of maps generating identical attractors. single but long enough time series at the bifurcation point is
In recent years coupled, identical, chaotic systems haveufficient to estimate the distribution. Moreover, the fine tun-

attracted wide attention due to their very interesting featuréng of the control parameter is not necessary since the power-

of chaotic synchronization and their possible applications idaw scaling both for laminar and for burst lengths appears in
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FIG. 3. (a) Dependence of inverse mean laminar lendfhed ) ] o
circles and mean burst lengttispen circleson the control param-  FIG- 5. Parameter, of the exponential falloff in the distribu-
etera for coupled, slightly nonidentical Rsler oscillators without oS of the laminar lengtidots and burst lengthircles versus
noise(the parameter in the third equation is changed to 5.75 for thdh€ threshold , for (a) the noisy 3D Heon map andb) the arti-
driving Rassler oscillator. The threshold,,=0.5 is the same for f|C|_aI linear system W|th reflectln_g barrler§ modeling tht_a a_ddmve
both laminar phases and burst phagbs.Same aga) but for the ~ NOISe and the nonllnearlty and (_jrlven by theﬂga map. Solid lines
noisy 3D Heon map (,,=5x 10"%). The straight lines are drawn correspond to the scaling predicted by the diffusional model.

only to guide the eye. law straight line, preceding the fast exponential falloff, is

better pronounced in the distribution of laminar lengths. The
reason is that the shoulder appears due to the so-called dif-

. L . fusional echo from the reflecting boundaries and it disap-
the experimental situation. For noise-free and completel 9 P

i ¢ h law in the distributi b ears if the reflecting boundary is not “hard” enough. The
Symmetric Systems the power law In the diStribulion can b&ieq ,sional model assumes that both noise and nonlinearity

obﬁerveclj alls;) jll%ht![y't?tipve thef t;)lfl#lca}tlon' point. gutr)ne”t'barriers are identical and predicts that the distributions of the
cally caiculated distributions o both faminar and burst,yinar and the burst lengths are identical. In the real sys-

Iengltlhf for the ﬁD H@onFmap anddforbthe coup{ed I&flrl tems, however, the nonlinearity barrier responsible for the
oscillators are shown in Figs(@) and 2b), respectively. shoulder in the distribution of the burst lengths is quite

distributions have a pronounced power-law scaling in the‘soft.” The influence of the nonlinear terms becomes impor-
range of medium lengths. The shoulder above the power- tant in the region in which the trajectory, visiting it once, can

stay for a long time. The noise-induced barrier is much
“harder” since noise rejects the trajectory very fast from the
too close neighborhood of the invariant manifold.

Another universal scaling law often observed is the linear
dependence of the inverse mean laminar length on the devia-
tion from the bifurcation point. In its pure form it appears
above the blowout bifurcation point for noise-free on-off in-
termittency. The identical scaling behavior is expected for
burst lengths below the bifurcation point in the model with
noise but without nonlinearity. However, even numerical
models without nonlinear terms are very artificial. For real
systems linear scaling of the inverse mean laminar and burst
lengths can be observed only in the limited range of the

FIG. 4. Dependence of inverse mean laminar ler(gthty and ~ control parameter above and below the bifurcation point, re-
burst lengthdcircles on the threshold,, for the noisy 3D Haon  spectively. The possibility to detect this region is very sen-
map at the bifurcation point. Solid lines correspond to the scalingsitive to the noise level. The situation becomes even more
predicted by the diffusional model. complicated for noise-free but slightly nonidentical coupled

the region above as well as below the bifurcation point for
the noisy and/or for the slightly asymmetric case typical in
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systems. In this case, the blowout bifurcation point itselfcompletely adequate description of the noise and nonlineari-

cannot be estimated precisely since two slightly differentties by the reflecting barriers, we have calculated the same

manifolds corresponding to each of the coupled systems exdependence ofy on ry, for the artificial model. The model

ist. The problem concerning the reliable estimation of thecorresponds to the noise-free linear chaotic walk with the

scaling region is seen in Fig. 3, though a symmetry betweedriving signal generated by the Hen map like in the case of

mean laminar and mean burst lengths is evident. the 3D one. The reflecting barriers were explicitly incorpo-
The identical scaling of laminar and burst lengths is betterated in numerical simulations. As it can be seen in Fi{g),5

pronounced in characteristics estimated at the noise-free bier this model not only the scaling but also the slopes are the

furcation point. The distribution of is only one example of same for both the laminar and the burst phases.

such characteristics. For the noisy 3Dride@ map we have

calculated numerically also the dependence of the mean IV. CONCLUSION

length (7) and of the parameter, on the threshold, as

shown in Figs. 4 and 5, respectively, defines the fast ex- We have shown that a symmetry between laminar and

burst phases for the on-off intermittency exists. It can be

ponential falloff for large lengthsr in the distributions etected visually if the intermittent time series is compared
P(7). These characteristics are conveniently estimated fronq ; y . A P

. ; ! i ; with that of the inverse variable. The diffusional model of

the time series data since calculations for the different ; . ; . .

SRR . on-off intermittency introduced earlier predicts a complete

threshold values discriminating laminar and burst phases can . i

. . . ; : symmetry between laminar and burst phases. It incorporates

be performed just from a single time series. As it can bereflectin barriers to model the influence of random additive

deduced from Figs. 4 and 5 the logarithmic dependence pre- 9

dicted by the diffusional model holds for a wide range of /'S¢, and nonlinearities. A numerical analysis of the noisy
- 3D Henon map and the unidirectionally coupled $ter os-

threshold values for both laminar and burst lengths. How-_. - .

cer cillators shows that for real systems exhibiting on-off inter-

ever, the agreement between the diffusional model and thé

. i , ittency only the scaling laws appear to be symmetric, but
numerical results is not complete. The model predicts no ! . ) . .
X npt the proportionality factors. This result is explained by the
only the same scaling but also the same absolute values

the proportionality factor. The corresponding slopes in Figs%‘Ct that reflecting boundaries represent only a rough ap-

4 and 5a) are clearly different for laminar phases and bursts.proximation for additive random noise and nonlinear terms.
Although predicting the correct scaling, the diffusional ACKNOWLEDGMENT

model incorporating reflecting barriers is not sufficient to
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